

Opportunities for Higgs Physics at Future Lepton-Nucleon Colliders

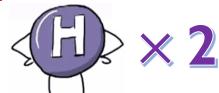
Chen Zhang (张宸) (Peking University)

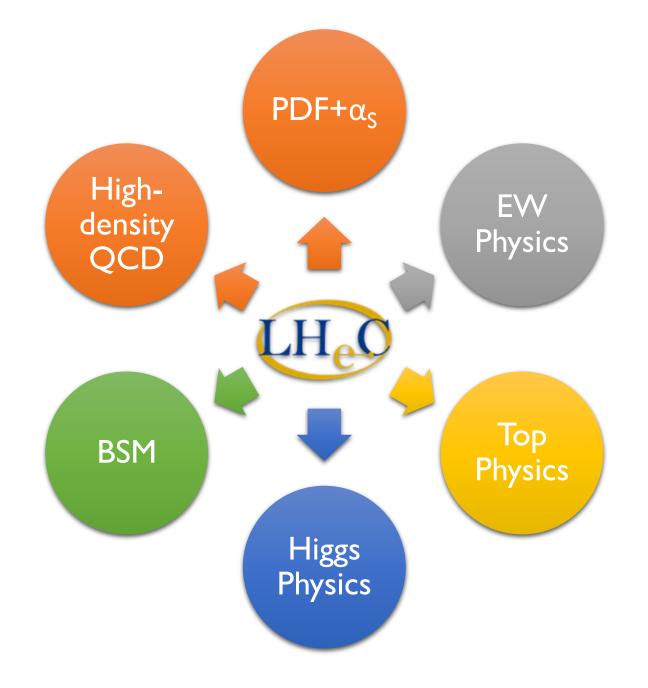
Joint CTEQ Meeting & POETIC 7 @Temple University

Nov. 16, 2016

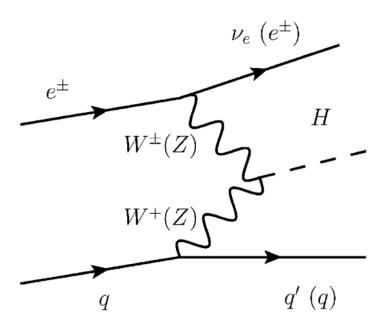
Outline

- I. Future projects of ep colliders: LHeC & FCC-he
- 2. Higgs boson production in ep collision
 - Single production
 - Pair production
- 3. Collider type consideration for Higgs physics
- 4. Higgs physics opportunities at the LHeC:
 - Bottom and charm Yukawa
 - Anomalous hVV and htt couplings
 - Invisible Higgs decay
 - Exotic Higgs decay h→φφ→4b
- 5. Conclusion and Discussion


Future Projects of ep Colliders


See talk by M. Klein on Nov. 15

- LHeC
 - Using 7 TeV HL-LHC proton beam
 - 60 GeV electron (possibly with -80% polarization)
 - Luminosity as high as I ab-I
 - Very large detector acceptance
 - Nearly free of pile-up
 - Expected to run synchronously with HL-LHC

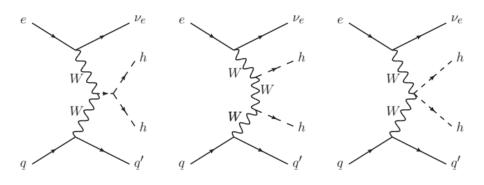


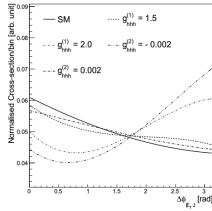
- FCC-he
 - Using 50 TeV FCC-hh proton beam
 - 60 GeV electron (possibly with -80% polarization)
 - Luminosity as high as O(I ab⁻¹)
 - Very large detector acceptance
 - Nearly free of pile-up
 - Expected to run synchronously with FCC-hh

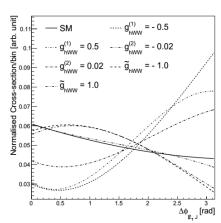
Single Production

$$P_{V/f}^{T}(x, p_T^2) = \frac{g_V^2 + g_A^2}{8\pi^2} \frac{1 + (1 - x)^2}{x} \frac{p_T^2}{(p_T^2 + (1 - x)M_V^2)^2},$$

$$P_{V/f}^{L}(x, p_T^2) = \frac{g_V^2 + g_A^2}{4\pi^2} \frac{1 - x}{x} \frac{(1 - x)M_V^2}{(p_T^2 + (1 - x)M_V^2)^2},$$

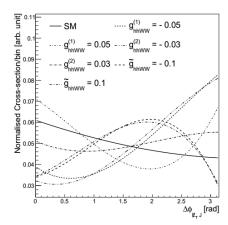

$$\sigma(fa \to f'X) \approx \int dx \ dp_T^2 \ P_{V/f}(x, p_T^2) \ \sigma(Va \to X).$$


- VBF-like topology for CC and NC production
- Understanding using effective W approximation:
 - No divergence when the pT of final state quark tends to zero, in contrast to QCD parton.
 - Because of the I/x behavior for the gauge boson distribution, the outgoing parton energy (I-x)E tends to be high.
 - At high pT, the contribution from the longitudinally polarized gauge bosons is relatively suppressed

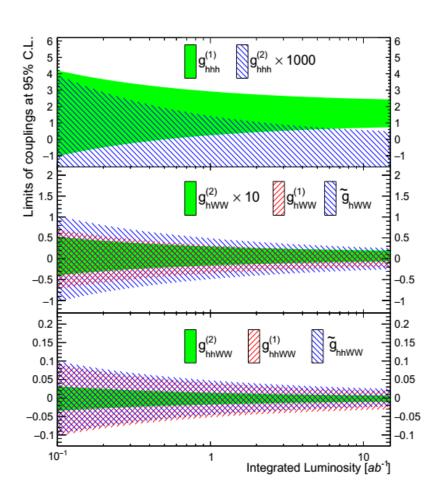

Single Production

Uta Klein, DIS2015									
Total event	¹ .	√s= 1.3 TeV			√s= 3.5 TeV				
Higgs in e^-p		CC - LHeC		NC - LHeC		CC - FHeC			
Polarisation		-0.8		-0.8		-0.8			
Luminosity $[ab^{-1}]$		1		1		5			
Cross Section [fb]		196		25		850			
Decay	BrFraction		N_{CC}^H	I	N_{NC}^{H}	N_{CC}^H			
$H o b \overline{b}$	0.577	A 1	13 100	13	900	2 450 000			
$H o c\overline{c}$	0.029		5 700		700	123 000			
$H \rightarrow \tau^{+} \tau$	-0.063	*	12 350	1	600	270 000			
$H \rightarrow \mu\mu$	0.00022		50		5	1 000			
H o 4l	0.00013		30		3	550			
$H \rightarrow 2l2l$	0.0106		2 080		250	45 000			
H o gg	0.086		16 850	2	050	365 000			
H o WV	V = 0.215		42 100	5	150	915 000			
H o ZZ	0.0264		5 200	1111	600	110 000			
$H o \gamma \gamma$	0.00228		450		60	10 000			
$H \to Z\gamma$	0.00154		300		40	6 500			

Pair Production



$$\mathcal{L}^{(3)}_{_{hhh}} = \frac{m_h^2}{2v} (1 - g^{(1)}_{_{hhh}}) h^3 + \frac{1}{2} g^{(2)}_{_{hhh}} h \partial_\mu h \partial^\mu h, \quad \mathcal{L}^{(3)}_{_{hWW}} = -\frac{g}{2m_W} g^{(1)}_{_{hWW}} W^{\mu\nu} W^\dagger_{\mu\nu} h \\ -\frac{g}{m_W} \left[g^{(2)}_{_{hWW}} W^\nu \partial^\mu W^\dagger_{\mu\nu} h + \text{h.c.} \right] \\ -\frac{g}{2m_W} \tilde{g}_{_{hWW}} W^{\mu\nu} \tilde{W}^\dagger_{\mu\nu} h,$$


- LHeC cross section (0.02fb) is too
 small=>FCC-he is needed (0.43fb).
- Azimuthal angle between MET and the forward jet is sensitive to new physics.

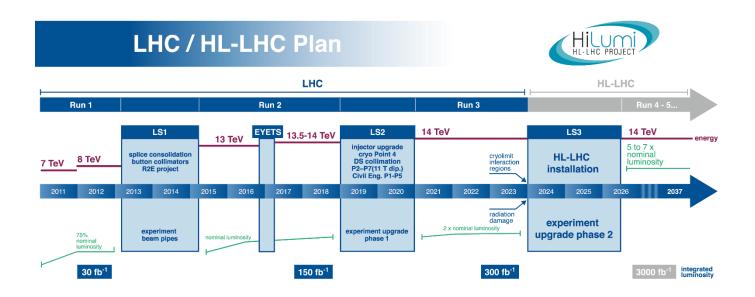
M. Kumar, et al., 1509.04016 (Submitted to PLB)

$$\begin{split} \mathcal{L}^{(4)}_{_{hhWW}} &= -\frac{g^2}{4m_W^2} g^{(1)}_{_{hhWW}} W^{\mu\nu} W^{\dagger}_{\mu\nu} h^2 \\ &- \frac{g^2}{2m_W^2} \left[g^{(2)}_{_{hhWW}} W^{\nu} \partial^{\mu} W^{\dagger}_{\mu\nu} h^2 + \text{h.c.} \right] \\ &- \frac{g^2}{4m_W^2} \tilde{g}_{_{hhWW}} W^{\mu\nu} \tilde{W}^{\dagger}_{\mu\nu} h^2. \end{split}$$

Pair Production

$$\begin{split} \mathcal{L}_{_{hhh}}^{(3)} &= \frac{m_{h}^{2}}{2v} (1 - g_{_{hhh}}^{(1)}) h^{3} + \frac{1}{2} g_{_{hhh}}^{(2)} h \partial_{\mu} h \partial^{\mu} h, \\ \mathcal{L}_{_{hWW}}^{(3)} &= -\frac{g}{2m_{W}} g_{_{hWW}}^{(1)} W^{\mu\nu} W_{\mu\nu}^{\dagger} h \\ &- \frac{g}{m_{W}} \left[g_{_{hWW}}^{(2)} W^{\nu} \partial^{\mu} W_{\mu\nu}^{\dagger} h + \text{h.c.} \right] \\ &- \frac{g}{2m_{W}} \tilde{g}_{_{hWW}} W^{\mu\nu} \tilde{W}_{\mu\nu}^{\dagger} h, \\ \mathcal{L}_{_{hhWW}}^{(4)} &= -\frac{g^{2}}{4m_{W}^{2}} g_{_{hhWW}}^{(1)} W^{\mu\nu} W_{\mu\nu}^{\dagger} h^{2} \\ &- \frac{g^{2}}{2m_{W}^{2}} \left[g_{_{hhWW}}^{(2)} W^{\nu} \partial^{\mu} W_{\mu\nu}^{\dagger} h^{2} + \text{h.c.} \right] \\ &- \frac{g^{2}}{4m_{W}^{2}} \tilde{g}_{_{hhWW}} W^{\mu\nu} \tilde{W}_{\mu\nu}^{\dagger} h^{2}. \end{split}$$

At the FCC-he the di-Higgs production is significant and through this channel one can probe accurately the Higgs boson self-coupling along with anomalous hhWW contributions, provided that integrated luminosities of more than I ab-I may be achieved.


M. Kumar, et al., 1509.04016 (Submitted to PLB)

Collider Type Consideration for Higgs Physics: Usual Options

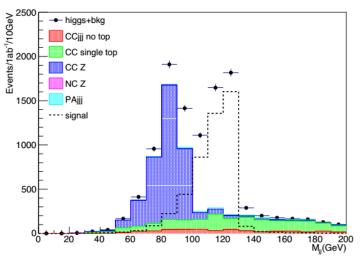
- (HL-)LHC
 - Large signal cross sections
 - Large backgrounds
 - Large pile-up
 - Higher thresholds needed to control systematics
 - Significant impact on the performance of objects like jet and MET

- Electron-positron collider
 - Small backgrounds
 - Pile-up negligible
 - Small signal cross sections
 - As long as the Br is not too small, e+e- machine will provide an ideal environment for precision Higgs studies.

Collider Type Consideration for Higgs Physics: The Role of the LHeC

- A high luminosity electron-positron collider with sufficient center-of-mass energy will be
 ideal for Higgs measurements. However, there is a non-negligible probability that such
 facilities won't be available before the end of HL-LHC.
- Therefore, it is worthwhile to consider the option of adding an electron beam to HL-LHC which may maximize its physics potential. (High luminosity for ep is also important.)

11/16/2016


Higgs Physics Opportunities at the LHeC:

Bottom and Charm Yukawa

- Classical channel h→bb at LHeC.
- CDR and updated cut-based studies done by Tokyo Institute of Technology Group (Masahiro Kuze et al.)

Updated by Masahiro Tanaka, May 2016

- · lab-1 is assumed
- Photo production events can be reduced to 10% if forward electron tagging is applied
- · Mass of 1st and 2nd minimum η b-jets

Number of events in signal region 100 < M_{bb} < 130 GeV

signal: 3822 +- 47

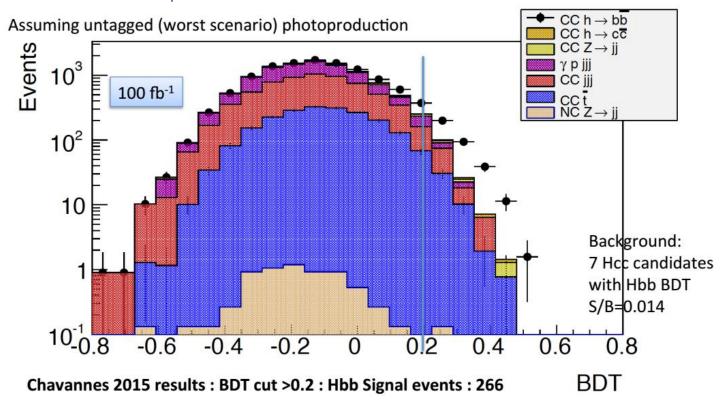
CCjjj no top: 125 +- 15

CC single top: 421 +- 19

CC Z: 164 +- 12

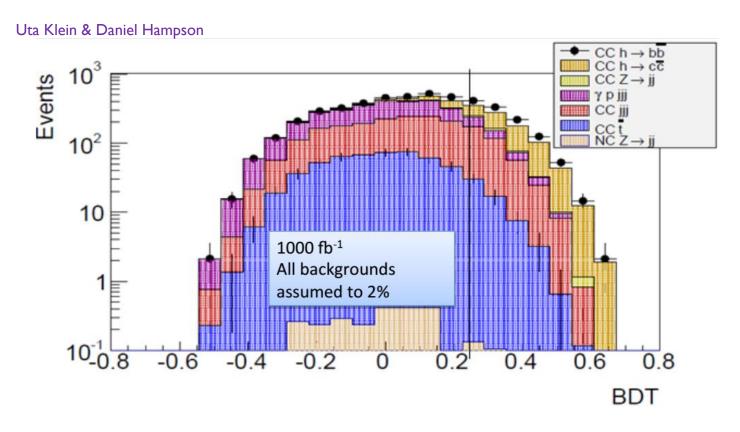
NC Z: 0

PAjjj: 40 +- 11


 S/\sqrt{B} : 139.6 +- 3.2

 σ_g/g : 0.0095

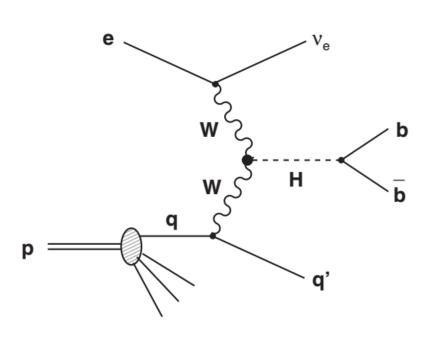
- · Photo production events is now almost negligible
- · Error of coupling constant is ~1% considering statistical error only

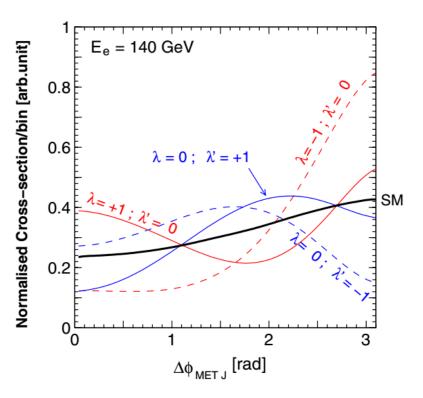

Higgs Physics Opportunities at the LHeC: Bottom and Charm Yukawa

Uta Klein, LHeC workshop 2015.

- Using jet lifetime tags and BDT.
- Bottom Yukawa measured to 1.5% precision with LHeC 1 ab-1.

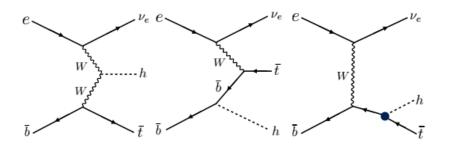
Higgs Physics Opportunities at the LHeC: Bottom and Charm Yukawa

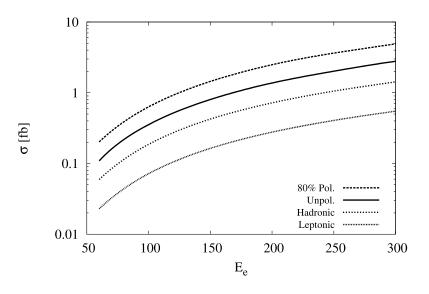

- Using jet lifetime tags and BDT. R=0.5 anti-kt jets and half nominal vertex resolution.
- Charm Yukawa measured to 5% precision with LHeC I ab-1.

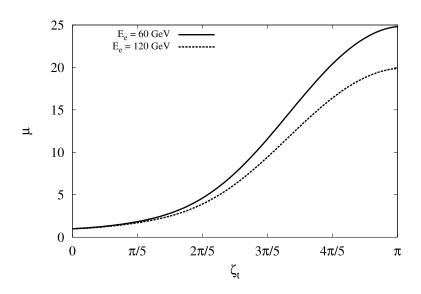

Higgs Physics Opportunities at the LHeC:

Anomalous hVV Couplings

S. Biswal, R. Godbole, B. Mellado, S. Raychaudhuri PRL 109, 261801 (2012)

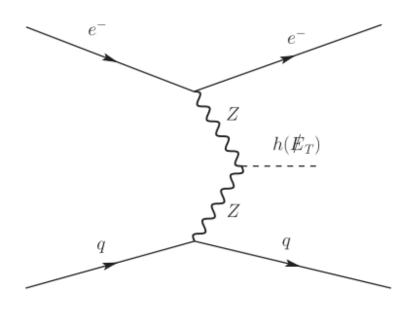

$$\begin{split} \Gamma^{\rm BSM}_{\mu\nu}(p,q) &= \frac{g}{M_W} [\lambda (p \cdot q g_{\mu\nu} - p_{\nu} q_{\mu}) \\ &+ i \lambda' \epsilon_{\mu\nu\rho\sigma} p^{\rho} q^{\sigma}], \end{split}$$


Higgs Physics Opportunities at the LHeC:


Anomalous htt Couplings

B. Coleppa, S. Kumar, M. Kumar, B. Mellado, in progress.

$$\mathcal{L} = -i\frac{m_t}{v}\bar{t}\left[\cos\zeta_t + i\gamma_5\sin\zeta_t\right]t\,h$$

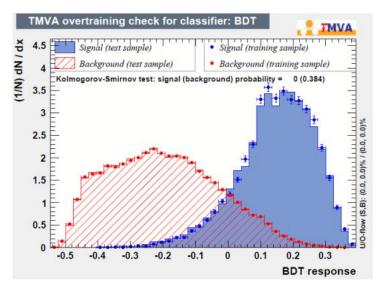


Strong increase of cross section for larger phase.

Higgs Physics Opportunities at the LHeC: Invisible Higgs Decay

Y. L. Tang, C. Zhang, S. Zhu, PRD 94 (2016) no.1, 011702

- Motivation: Important and well-motivated signature in many types of BSM & regular constraint on DM models, complementary to DM direct detection.
- Search channel at (HL-)LHC:VBF & ZH
- Signal at LHeC: NC Higgs. (~20 fb before Higgs decay and cuts, assuming -90% electron polarization)
- Major background:Wje,Wjv,Zje
- Event selection: basic cuts, MET cuts, VBF-like cuts, cuts on electron eta and inelasticity, lepton veto.

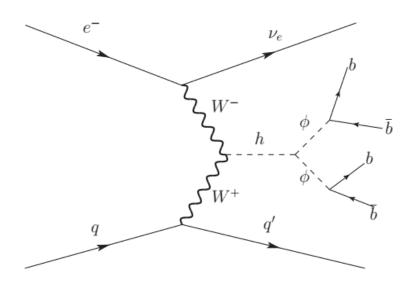

Higgs Physics Opportunities at the LHeC: Invisible Higgs Decay

Parton level cut-based study

- Basic cuts & high MET threshold
- VBF-like cuts & cuts on electron pseudorapidity and inelasticity
- Lepton veto
- About I.8fb signal (100% Br) and 3fb background after all cuts, probing 6% Br @ 2σ with I ab-1.

Detector level study with MVA

Probing 4.6% Br @ 2σ with I ab-I.
 (Preliminary results by S. Kawaguchi and M. Kuze, Tokyo Institute of Technology)



Higgs Physics Opportunities at the LHeC:

Higgs to 4b

φ: a spin-0 particle from new physics.

$$eq \rightarrow \nu_e h q' \rightarrow \nu_e \phi \phi q' \rightarrow \nu_e b \bar{b} b \bar{b} q'$$

$$C_{4b}^2 = \kappa_V^2 \times \text{Br}(h \to \phi\phi) \times \text{Br}^2(\phi \to b\bar{b})$$

S. Liu, Y. L. Tang, C. Zhang, S. Zhu, 1608.08458

- Well motivated signature in extended Higgs sector.
- Difficult to probe at hadron colliders.
- LHeC signal: here using CC channel.
- Backgrounds: CC multijet, CC t/h/W/Z+jets, PHP multijet.
- PHP backgrounds assumed to be negligible after MET requirements and electron tagging.
- Current analysis is done at parton level.

φ mass range targeted in this study: [20,60]GeV, scanned in I GeV step.

Higgs Physics Opportunities at the LHeC: Higgs to 4b

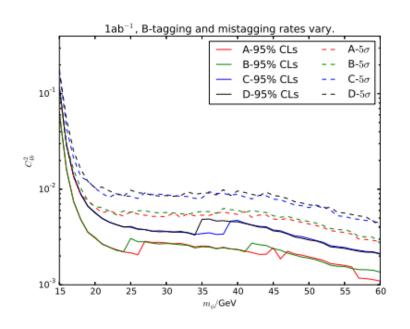
- Jet energy smearing $\frac{\sigma_E}{E}=\frac{\alpha}{\sqrt{E}}\oplus \beta$ $\alpha=0.45~{
 m GeV}^{1/2}, \beta=0.03$
- Basic cuts: requiring at least 5 jets satisfying $p_{Tj} > 20 \text{ GeV}, |\eta_j| < 5.0, \Delta R_{jj} > 0.4$

(Electron tagged events are excluded. Charged leptons are vetoed.)

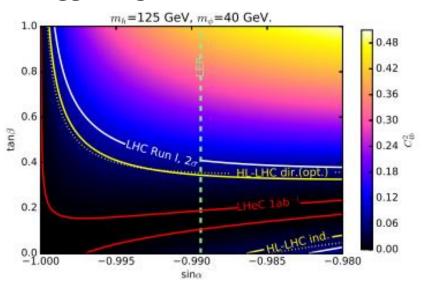
- MET: (E₀=40GeV as default) $E_T > E_0$
- 4b-tagging At least 4 b-tagged jets in $|\eta| < 5.0$

(A)
$$\epsilon_b = 70\%, \epsilon_c = 10\%, \epsilon_{q,u,d,s} = 1\%$$

(B)
$$\epsilon_b = 70\%, \epsilon_c = 20\%, \epsilon_{q,u,d,s} = 1\%$$


(C)
$$\epsilon_b = 60\%, \epsilon_c = 10\%, \epsilon_{q,u,d,s} = 1\%$$

(D)
$$\epsilon_b = 60\%, \epsilon_c = 20\%, \epsilon_{g,u,d,s} = 1\%$$


- 4b invariant mass window: $|m_{4b}-m_h|<20~{
 m GeV}$
- 2b invariant mass window: for the "correct" grouping $|m_{2b,i}-m_{\phi}|<10~{
 m GeV},~i=1,2$

Higgs Physics Opportunities at the LHeC: Higgs to 4b

LHeC I ab-I sensitivity

Sensitivity comparison in Higgs Singlet Model

- 95% CLs upper limit of C_{4b}^2 for 20, 40, 60 GeV phi mass with 1 ab⁻¹: 0.3%, 0.2%, 0.1% (E_0 =40GeV)
- For E_0 =60GeV, corresponding limits change to: 0.5%, 0.4%, 0.2%
- Better sensitivity than HL-LHC is guaranteed.

11/16/2016

Contents 1. Introduction and Overview 1.1. General Motivation to Searce 1.2. Exotic Decay Modes of the 1 1.3. Theoretical Models for Exot 1.3.1. SM + Scalar 1.3.2. 2HDM (+ Scalar) 1.3.3. SM + Fermion 1.3.4. SM + 2 Fermions 1.3.5. SM + Vector 1.3.6. MSSM 1.3.7. NMSSM with exotic 1.3.8. NMSSM with exotic 1.3.9. Little Higgs 1.3.10. Hidden Valleys	3.3. Existing Experiment 3.4. Proposals for New So 4. h → 2b2τ 4.1. Theoretical Motivati 4.2. Existing Collider Stu 4.3. Discussion of Future	 5.1. Theoretical Mo 5.2. Existing Collid 5.3. Proposals for N 6. h → 4τ, 2τ2μ 6.1. Theoretical Mo 6.2. Existing Collid 6.3. Existing Exper 6.4. Proposals for N 7. h → 4j 7.1. Theoretical Mo 7.2. Existing Collid 	 8. h → 2γ2j 8.1. Theoretical Motivation 8.2. Existing Collider Studies 8.3. Existing Experimental Searches and Limits 8.4. Proposals for Future Searches 9. h → 4γ 9.1. Theoretical Motivation 9.2. Existing Collider Studies 9.3. Existing Experimental Searches and Limits 9.4. Proposals for New Searches at the LHC 10. h → ZZ_D, Za → 4ℓ 10.1. Theoretical Motivation 10.1.1. h → ZZ_D 10.1.2. h → Za 	97 97 98 100 100 101 102 105 106 106 106 107
2. $h \to E_T$ 2.1. Theoretical Motivation 2.2. Existing Collider Studies 2.3. Existing Experimental Ser	14. $h \rightarrow 4$ Isolated Leptons + 14.1. Theoretical Motivation 14.2. Existing Experimental S	Searches and Limits	rches and Limits s at the LHC	1108 1108 1111
 11. h → Z_DZ_D → 4ℓ 11.1. Theoretical Motivation 11.2. Existing Collider Studie 11.3. Existing Experimental ! 12. h → γ + F_T 12.1. Theoretical Motivations 12.2. Existing Collider Studie 12.3. Existing Experimental ! 13. h → 2γ + F_T 13.1. Theoretical Motivation 	 15. h → 2ℓ + ₺т 15.1. Theoretical Motivation 15.2. Existing Experimental S 16. h → One Lepton-jet + X 16.1. Theoretical Motivation 16.2. Existing Collider Studies 16.3. Existing Experimental S 16.4. Proposals for New Search 17. h → Two Lepton-jets + X 17.1. Theoretical Motivation 	Searches and Limits es Searches and Limits ches at the LHC	 17.3. Existing Experimental Searches and Limits 8. h → bb̄ + ₱_T 18.1. Theoretical Motivation 18.2. Existing Collider Studies 18.3. Existing Experimental Searches and Limits 9. h → τ⁺τ⁻ + ₱_T 19.1. Theoretical Motivation 19.2. Existing Collider State 19.3. Existing Collider State 19.3. Existing Collider State 19.3. Existing Collider State 19.4. Theoretical Motivation 19.4. Theoretical Motivation 19.5. Existing Collider State 19.6. Existing Collider State 19.7. Theoretical Motivation 19.8. Existing Collider State 19.9. Existing Collider State 19.1. Theoretical Motivation 19.2. Existing Collider State 19.3. Existing Collider State 19.4. Theoretical Motivation 19.4. Theoretical Motivation 19.4. Theoretical Motivation 19.5. Existing Collider State 19.6. Existing Collider State 19.7. Theoretical Motivation 19.8. Existing Collider State 19.8. Existin	147 149 150 151 151 152 153 154
13.1.1. Non-Resonant 13.1.2. Resonant 13.1.3. Cascade 13.2. Existing Experimental Sea	17.2. Existing Collider Studies	ES 125 125 125 125 125 125 125 125 125 125	vely real	

Conclusion and Discussion

- Future ep colliders LHeC and FCC-he have an extremely rich physics program in which Higgs-related measurements play an important role, due to cleaner environment compared to concurrent hadron colliders.
- Higgs pair production can be studied at FCC-he.
- Single Higgs production can be studied at the LHeC to measure bottom and charm Yukawa, anomalous hVV couplings, invisible Higgs decay, h→φφ→4b and other exotic decays, with better or comparable sensitivities compared to HL-LHC, making LHeC a very interesting and important candidate for precision Higgs studies in the HL-LHC era.

11/16/2016

Backup

LHeC Detector Setup for Bottom Yukawa Study (Tokyo Group)

Setup of LHeC detector

- · Coverage:
 - Calorimeter: $|\eta| < 5$ Tracking: $|\eta| < 4.7$
- · Jet reconstruction:
 - Anti k_T algorithm with ΔR =0.7
- HCal resolution

$$\frac{\sigma}{E} = \frac{35\%}{\sqrt{E}} + 3\%(|\eta| < 2)$$
 $\frac{\sigma}{E} = \frac{45\%}{\sqrt{E}} + 5\%(2 < |\eta| < 5)$

ECal resolution

$$\frac{\sigma}{E} = \frac{35\%}{E} \oplus \frac{7\%}{\sqrt{E}} \oplus 0.7\% (|\eta| < 3)$$

$$\frac{\sigma}{E} = \frac{20\%}{\sqrt{E}} \oplus 2\% \ (3 < |\eta| < 4)$$

$$\frac{\sigma}{E} = \frac{40\%}{\sqrt{E}} \oplus 10\% \ (4 < |\eta| < 5)$$

- · B-tag
- $|\eta| < 3.0$
- B-jet ID: 60%
- · C-jet mis-ID: 10%
- Light jet mis-ID: 1%